Entries by

Optimal Business Control

Optimal business control (OBC) is a set of management, data collection, analytics, machine learning and automation processes through which management predicts, evaluates, and, when necessary, responds to mitigate dynamic complexity related risks that hinder the realization of business goals.

Perturbation Theory

Perturbation theory provides a mathematical method for finding an approximate solution to a problem, by starting from the exact solution of a related problem. A critical feature of the technique is a middle step that breaks the problem into “solvable” and “perturbation” parts. Perturbation theory is applicable if the problem at hand cannot be solved exactly, but can be formulated by adding a “small” term to the mathematical description of the exactly solvable problem.

Understanding Dynamic Complexity

Complexity is a subject that everyone intuitively understands. If you add more components, more requirements or more of anything, a system apparently becomes more complex. In the digital age, as globalization and rapid technology advances create an ever-changing world at a faster and faster pace, it would be hard not to see the impacts of complexity, but dynamic complexity is less obvious. It lies hidden until the symptoms reveal themselves, their cause remaining undiscovered until their root is diagnosed. Unfortunately, diagnosis often comes too late for proper remediation. We have observed in the current business climate that the window of opportunity to discover and react to dynamic complexity and thereby avoid negative business impacts is shrinking.

Dynamic Complexity in Healthcare

There is no doubt that the impact of dynamic complexity causes a great number of healthcare transformation project failures. Project outcomes are typically marred by costs that are several times higher than originally planned and significant project delays, which then further inflate the overall costs of the change program. In general, these problems are created when dynamic complexity is ignored during the business analysis phase that precedes information technology system transformation plans.

Reconstructing the 2007-2008 Financial Crisis

To analyze the root cause of the 2007-2008 financial crisis, we built a mathematical emulator that represented the financial market dynamics prior to the crash. This included the financial engines and dynamic flows among them and explicitly the dependencies on the internal structure and the external influencers that impact market performance.

Dynamic Complexity’s Role in 2007-2008 Financial Crisis

The real cause of the economic meltdown can be traced to intertwined financial domains, which generated considerable dynamic complexity that in turn made it difficult to determine the possible outcomes. There is no doubt that the subprime foreclosure rate started the domino effect, but had the degree of inter-domains dependency not pre-existed, then the effect on the market would have been much less severe.