Posts

URM GROUP CRO Nabil Abu el Ata Accepted into Forbes Business Council

Forbes Business Council is an invitation-only community for successful business owners and leaders

Dr. Nabil Abu el Ata, Co-founder and Chief Research Officer (CRO) of URM GROUP, has been accepted into the Forbes Business Council, the foremost growth and networking organization for successful business owners and leaders worldwide.

Dr. Abu el Ata was selected by a review committee based on the depth and diversity of his experience. Criteria for acceptance include a track record of successfully impacting business growth metrics, as well as personal and professional achievements and honors.

As a member of the Council, Dr. Abu el Ata has access to exclusive opportunities to extend his professional influence and collaborate with other respected leaders. Dr. Abu el Ata will also author original articles to share his expert insights and contribute to published Expert Panels alongside other experts on Forbes.com.

“I am honored to have been accepted into Forbes’ Business Council to join like-minded professionals, extend our company’s strategic vision, and amplify its impact on the industry leaders we serve,” said Nabil Abu el Ata, Chief Research Officer of URM Group. “Connecting with other great minds encourages novel ideas and will lead our company to new opportunities. In return, I look forward to sharing the insights I have gained over my 30-plus years of experience as a scientist and business technology leader with other aspiring entrepreneurs.”

ABOUT FORBES COUNCILS

Forbes Councils is a collective of invitation-only communities created in partnership with Forbes and the expert community builders who founded Young Entrepreneur Council (YEC). In Forbes Councils, exceptional business owners and leaders come together with the people and resources that can help them thrive. To learn more about Forbes Councils, visit https://councils.forbes.com.

ABOUT DR NABIL ABU EL ATA

Dr. Nabil Abu el Ata is an award-winning mathematician, inventor, and author of Solving the Dynamic Complexity Dilemma, The Tyranny of Uncertainty, and Leading from Under the Sword of Damocles. In the late 1970s, the predictive accuracy of Abu el Ata’s algorithms made it possible to launch the first satellites into orbit. Since then, he has dedicated his career to helping business, government, and scientific leaders harness the power of algorithmic intelligence to bring dynamically complex problems into focus and turn organizational goals into executable strategies. As the co-founder and chief research officer of URM GROUP, Abu el Ata drives awareness, adoption, and development of digital twin technologies and intelligent decision-making tools in alignment with the demands of the fourth industrial revolution.

ABOUT URM GROUP

URM GROUP delivers the answers executives and operational teams need to consistently deliver value and control risks arising from the complex nature of global business operations. Using a unique combination of digital twin technologies and intelligent decision-making tools, URM GROUP products bring problems into focus and verify which actions should be taken to advance business goals. Leaders within critical infrastructure, manufacturing, transportation, healthcare, and governments use X-ACT® to deliver operational excellence and make informed decisions relating to a wide range of strategic objectives, including optimization, digital transformation, green supply chain, and smart manufacturing.

For additional information, visit https://urmgrp.com/ or connect with us on Twitter @URMgroup.

New Book from URM Founders

Explains How Businesses Use Risk Management Breakthroughs to Outperform Competitors, Achieve Higher Profits and Sustain Growth


“Leading from Under the Sword of Damocles: A Business Leader’s Practical Guide to Using Predictive Emulation to Manage Risk and Maintain Profitability” is now available at online booksellers

Dr. Nabil Abu el Ata, URM founder, business technologist and author, has just released his latest book, Leading from Under the Sword of Damocles: A Business Leader’s Practical Guide to Using Predictive Emulation to Manage Risk and Maintain Profitability. Dr. Abu el Ata jointly authored the book with Annie Drucbert, URM co-founder and technology strategist, to explain how businesses are using universal risk management (URM) breakthroughs to outperform competitors, achieve higher profits and sustain growth.

Globalization trends and the rapid pace of technological innovations have introduced unprecedented change and uncertainty. To thrive under these conditions, companies must adopt new risk management practices and technologies to better anticipate and adjust to risks caused by the hyper connectivity of our modern world.

Leading from Under the Sword of Damocles helps readers understand how new algorithm-based predictive and prescriptive analytics technologies are being used to control risk and maximize opportunities in today’s dynamic business environment.

Case studies show how the presented URM methods have been practically applied to preemptively expose risks and support decisions to optimize, transform or disrupt current business models, strategies, organizational structure and information technology (IT) systems when necessary to maintain a market position or outperform competitors.

“For those that want to forge a clearer and more scientific path forward,” Charlie Fote, CEO, Fotec Group, former CEO, First Data Corporation, says, “Leading from Under the Sword of Damocles provides a practical guide that shows business leaders and risk management practitioners how mathematical emulation can be used to understand the modern impacts of hyper connectivity and hyper risk, as well as clearly identify when and which opportunistic actions should be taken to ensure the continuous efficiency and cost effectiveness of business operations.”

Leading from Under the Sword of Damocles  is 233 pages, published by Springer, and available in both print and e-book through online book sellers including Amazon.com and Springer.

To learn more about the practice of universal risk management and the technological breakthroughs that support improved business performance, visit: http://URMgrp.com.

About the Authors

Nabil Abu el Ata has invested over 20 years maturing the science of risk management and the practical application of predictive analytics technologies. In the late 1970s Dr. Abu el Ata’s mathematical discoveries provided accurate coordinates for space exploration. By solving a problem that was previously defined as unsolvable, Dr. Abu el Ata set the foundation for a new era of risk management, which today enables companies worldwide to more accurately predict future system behaviors and take strategic actions to improve business outcomes.

Annie Drucbert is a co-founder of URM GROUP and a recognized authority in the predictive and prescriptive analysis of economic, financial and enterprise systems. Mrs. Drucbert’s specialties include modeling, emulation and performance management of complex database and corporate systems. Mrs. Drucbert holds 3 US patents and has delivered strategic, tactical and operational services using X-Act OBC Platform for many global clients.

 

 

New Book from Dr. Abu el Ata Offers A New Framework to Predict, Remediate and Monitor Risk

“The Tyranny of Uncertainty” is now available for purchase on Amazon.com

Omaha, NE—May 18, 2016–Accretive Technologies, Inc. (Accretive) announces the release of a new book, “The Tyranny of Uncertainty.” Accretive Founder and CEO, Dr. Nabil Abu el Ata, jointly authored the book with Rudolf Schmandt, Head of EMEA and Retail production for Deutsche Bank and Postbank Systems board member, to expose how dynamic complexity creates business risks and present a practical solution.

The Tyranny of Uncertainty explains why traditional risk management methods can no longer prepare stakeholders to act at the right time to avoid or contain risks such as the Fukushima Daiichi Nuclear Disaster, the 2007-2008 Financial Crisis, or Obamacare’s Website Launch Failure. By applying scientific discoveries and mathematically advanced methods of predictive analytics, the book demonstrates how business and information technology decision makers have used the presented methods to reveal previously unknown risks and take action to optimally manage risk.

Further, the book explains the widening impact of dynamic complexity on business, government, healthcare, environmental and economic systems and forewarns readers that we will be entering an era chronic crisis if the appropriate steps are not taken to modernize risk management practices. The presented risk management problems and solutions are based upon Dr. Abu el Ata’s and Mr. Schmandt’s decades of practical experience, scientific research, and positive results achieved during early stage adoption of the presented innovations by hundreds of global organizations.

The book is available  to order on amazon.com at https://www.amazon.com/Tyranny-Uncertainty-Framework-Predict-Remediate/dp/3662491036/ref=sr_1_1.

The methodologies and innovations presented in this book by Dr. Abu El Ata and Mr. Schmandt are now in various stages of adoption with over 350 businesses worldwide and the results have been very positive. Businesses use the proposed innovations and methodologies to evaluate new business models, identify the root cause of risk, re-architect systems to meet business objectives, identify opportunities for millions of dollars of cost savings and much more.

About Accretive

Accretive Technologies, Inc. offers highly accurate predictive and prescriptive business analytic capabilities to help organizations thrive in the face of increasing pressures to innovate, contain costs and grow. By leveraging the power of Accretive’s smart analytics platform and advisory services, global leaders in financial, telecommunications, retail, entertainment, services and government markets gain the foresight they need to make smart transformation decisions and maximize the performance of organizations, processes and infrastructure. Founded in 2003 with headquarters in New York, NY and offices in Omaha, NE and Paris, France, Accretive is a privately owned company with over 350 customers worldwide. For more information, please visit http://www.acrtek.com.

Perturbation Theory

Perturbation theory provides a mathematical method for finding an approximate solution to a problem, by starting from the exact solution of a related problem. A critical feature of the technique is a middle step that breaks the problem into “solvable” and “perturbation” parts. Perturbation theory is applicable if the problem at hand cannot be solved exactly, but can be formulated by adding a “small” term to the mathematical description of the exactly solvable problem.

Background

Perturbation theory supports a variety of applications including Poincaré’s chaos theory and is a strong platform to deal with the dynamic behavior problems . However, the success of this method is dependent on our ability to preserve the analytical representation and solution as far as we are able to afford (conceptually and computationally). As an example, I successfully applied these methods in 1978 to create a full analytical solution for the three-body lunar problem[1].

In 1687, Isaac Newton’s work on lunar theory attempted to explain the motion of the moon under the gravitational influence of the earth and the sun (known as the three-body problem), but Newton could not account for variations in the moon’s orbit. In the mid-1700s, Lagrange and Laplace advanced the view that the constants, which describe the motion of a planet around the Sun, are perturbed by the motion of other planets and vary as a function of time. This led to further discoveries by Charles-Eugène Delaunay (1816-1872), Henri Poincaré (1854 – 1912), and more recently I used predictive computation of direct and indirect planetary perturbations on lunar motion to achieve greater accuracy and much wider representation. This discovery has paved the way for space exploration and further scientific advances including quantum mechanics.

How Perturbation Theory is Used to Solve a Dynamic Complexity Problem

The three-body problem of Sun-Moon-Earth is an eloquent expression of dynamic complexity whereby the motion of planets are perturbed by the motion of other planets and vary as a function of time. ‪ While we have not solved all the mysteries of our universe, we can predict the movement of a planetary body with great accuracy using perturbation theory.

During my doctorate studies, I found that while Newton’s law is ostensibly true in a simple lab setting, its usefulness decreases as complexity increases. When trying to predict the trajectory (and coordinates at a point in time) of the three heavenly bodies, the solution must account for the fact that the gravity attracts these bodies to each other depending on their mass, distance, and direction. Their path or trajectory therefore undergoes constant minute changes in velocity and direction, which must be taken into account at every step of the calculation. I found that the problem was solvable using common celestial mechanics if you start by taking only two celestial bodies, e.g. earth and moon.

But of course the solution is not correct because the sun was omitted from the equation. So this incorrect solution is then perturbed by adding the influence of the sun. Note that the result is modified, not the problem, because there is no formula for solving a problem with three bodies. Now we are closer to reality but still far from precision, because the position and speed of the sun, which we used was not its actual position. Its actual position is calculated using the same common celestial mechanics as above but applied this time to the sun and earth, and then perturbing it by the influence of the moon, and so on until an accurate representation of the system is achieved.

Applicability to Risk Management

The notion that the future rests on more than just a whim of the gods is a revolutionary idea. A mere 350 years separate today’s risk-assessment and hedging techniques from decisions guided by superstition, blind faith, and instinct. During this time, we have made significant gains. We now augment our risk perception with empirical data and probabilistic methods to identify repeating patterns and expose potential risks, but we are still missing a critical piece of the puzzle. Inconsistencies still exist and we can only predict risk with limited success. In essence, we have matured risk management practices to the level achieved by Newton, but we cannot yet account for the variances between the predicted and actual outcomes of our risk management exercises.

This is because most modern systems are dynamically complex—meaning system components are subject to the interactions, interdependencies, feedback, locks, conflicts, contentions, prioritizations, and enforcements of other components both internal and external to the system in the same way planets are perturbed by other planets. But capturing these influences either conceptually or in a spreadsheet is impossible, so current risk management practices pretend that systems are static and operate in a closed-loop environment. As a result, our risk management capabilities are limited to known risks within unchanging systems. And so, we remain heavily reliant on perception and intuition for the assessment and remediation of risk.

I experienced this problem first hand as the Chief Technology Officer of First Data Corporation, when I found that business and technology systems do not always exhibit predictable behaviors. Despite the company’s wealth of experience, mature risk management practices and deep domain expertise, sometimes we would be caught off guard by an unexpected risk or sudden decrease in system performance. And so I began to wonder if the hidden effects which made the prediction of satellite orbits difficult, also created challenges in the predictable management of a business. Through my research and experiences, I found that the mathematical solution provided by perturbation theory was universally applicable to any dynamically complex system—including business and IT systems.

Applying Perturbation Theory to Solve Risk Management Problems

Without the ability to identify and assess the weight of dynamic complexity as a contributing factor to risk, uncertainty remains inherent in current risk management and prediction methods. When applied to prediction, probability and experience will always lead to uncertainties and prohibit decision makers from achieving the optimal trade-off between risk and reward. We can escape this predicament by using the advanced methods of perturbation mathematics I discovered as computer processing power has advanced sufficiently to support my methods perturbation based emulation to efficiently and effectively expose dynamic complexity and predict its future impacts.

Emulation is used in many industries to reproduce the behavior of systems and explore unknowns. Take for instance space exploration. We cannot successfully construct and send satellites, space stations, or rovers into unexplored regions of space based merely on historical data. While the known data from past endeavors is certainly important, we must construct the data which is unknown by emulating the spacecraft and conducting sensitivity analysis. This allows us to predict the unpredicted and prepare for the unknown. While the unexpected may still happen, using emulation we will be better prepared to spot new patterns earlier and respond more appropriately to these new scenarios.

Using Perturbation Theory to Predict and Determine the Risk of Singularity

Perturbation theory seems to be the best-fit solution for providing accurate formulation of dynamic complexity that is representative of the web of dependencies and inequalities. Additionally, perturbation theory allows for predictions that correspond to variations in initial conditions and influences of intensity patterns.  In a variety of scientific areas, we have successfully applied perturbation theory to make accurate predictions.

After numerous applications of perturbation theory based-mathematics, we can affirm its problem solving power. Philosophically, there exists a strong affinity between dynamic complexity and its discovery revealed through perturbation based-solutions. At the origin, we used perturbation theory to solve gravitational interactions. Then we used it to reveal interdependencies in mechanics and dynamic systems that produce dynamic complexity. We feel strongly that perturbation theory is the right foundational solution of dynamic complexity that produces a large spectrum of dynamics: gravitational, mechanical, nuclear, chemical, etc. All of them represent a dynamic complexity dilemma. All of them have an exact solution if and only if all or a majority of individual and significant inequalities are explicitly represented in the solution.

An inequality is the dynamic expression of interdependency between two components. Such dependency could be direct (e.g. explicit connection always first order) or indirect (connection through a third component that may be of any order on the base that the perturbed perturbs). As we can see, the solutions based on Newton’s work were only approximations of reality as Newton principles considered only the direct couples of interdependencies as the fundamental forces.

We have successfully applied perturbation theory across a diverse range of cases from economic, healthcare, and corporate management modeling to industry transformation and information technology optimization. In each case, we were able to determine with sufficient accuracy the singularity point—beyond which dynamic complexity would become predominant and the predictability of the system would become chaotic.

Our approach computes the three metrics of dynamic complexity and determines the component, link, or pattern that will cause a singularity. It also allows users to build scenarios to fix, optimize, or push further the singularity point. It is our ambition to demonstrate clearly that perturbation theory can be used to not only accurately represent system dynamics and predict its limit/singularity, but also to reverse engineer a situation to provide prescriptive support for risk avoidance.

More details on how we apply perturbation theory to solve risk management problems and associated case studies are provided in my book, The Tyranny of Uncertainty.

[1] Abu el Ata, Nabil. Analytical Solution the Planetary Perturbation on the Moon. Doctor of Mathematical Sciences Sorbonne Publication, France. 1978.

 

Portfolio Items